腾讯吴运声:腾讯云MaaS,打造一站式行业大模型精选商店

2024-12-01 00:31:19 admin

6月19日,腾讯腾讯云在国家科技传播中心召开行业大模型及智能应用技术峰会,吴运首次公布腾讯云行业大模型研发进展,声腾依托腾讯云TI平台打造行业大模型精选商店,讯云行业型精选商为客户提供MaaS(Model-as-a-Service)一站式服务,打造大模店助力客户构建专属大模型及智能应用。站式

峰会上,腾讯腾讯云副总裁、吴运腾讯云智能负责人、声腾优图实验室负责人吴运声发表《腾讯云MaaS,讯云行业型精选商打造一站式行业大模型精选商店》的打造大模店主题演讲,分享了腾讯云在行业大模型方面的站式技术方案,以及产业客户实践、腾讯行业大模型标准体系构建的吴运进展。  

                                         腾讯吴运声:腾讯云MaaS,声腾打造一站式行业大模型精选商店

腾讯云副总裁、腾讯云智能负责人、优图实验室负责人 吴运声

吴运声认为,大模型驱动“智慧涌现”,产业场景已成为最佳练兵场,在智能问答、内容创作、智能决策、智能风控等很多业务场景,具有非常广泛的应用价值。腾讯云希望为客户和伙伴打造一站式的行业大模型精选商店,加速大模型在产业领域的创新实践。

企业在应用大模型时,常常面临计算资源少、数据质量差、投入成本高、专业经验少等挑战,吴运声表示,腾讯云将通过TI平台,面向客户全面输出MaaS能力,可以满足客户模型预训练、模型精调、智能应用开发等多样化需求,让客户可根据自身业务场景需求,定制不同参数、不同规格的专属模型。

峰会现场,吴运声展示了文旅客服大模型场景的精调过程及效果。通过加入文旅行业垂直场景数据、接入文旅客户API接口后,模型不仅可以为用户制订细致的旅行攻略,提供非常人性化的服务体验,也让智能客服系统,实现服务商业化的闭环。而未来随着更多高质量数据的增加,模型的精调效果还会更好。

目前,腾讯云已经携手传媒、文旅、金融、政务、教育等行业的头部企业,在十余个行业探索了超50个行业大模型的应用解决方案。

以下为演讲全文:

尊敬的各位嘉宾、媒体朋友们,大家下午好!

我是腾讯的吴运声,今天我的分享主题是《腾讯云MaaS,打造一站式行业大模型精选商店》。这是我们的定位,也是我们努力的方向。

依托腾讯云的高性能计算、行业大模型能力,以及我们多年深耕产业互联网积累的行业经验,我们希望为客户和伙伴,打造一站式的行业大模型精选商店,加速大模型在产业领域的创新实践。

大模型驱动“智慧涌现”,产业场景已成为最佳练兵场,在智能问答、内容创作、智能决策、智能风控等很多业务场景,具有非常广泛的应用价值。那么,如何将大模型快速应用到自己的业务场景中?怎么才能在新一轮技术浪潮中不掉队?

最近半年多的时间里,我们收到了非常多来自客户的问询。对于很多企业而言,想要用好大模型,确实面临不少挑战。

第一,是计算资源少。大模型的训练和推理对计算资源和存储资源有很高的需求,对很多客户来说门槛太高。

第二,数据质量差。构建大模型是成本极高的系统工程,大模型需要大量的高质量数据进行训练,数据还必须经过清洗和预处理。数据质量差,会导致模型的效果和效率无法得到保障。

第三,投入成本高。为确保业务使用的效果需要投入大量的数据、计算资源来训练,还需要持续的调试和优化。

第四,专业经验少。大模型的部署需要考虑到计算资源、网络带宽等多个方面的问题,大模型的开发和落地需要很多的技术和人力资源。此外,安全、合规,也是企业需要考虑的关键因素。

那么,如何解决产业客户落地大模型,所面临的成本、数据、安全等一系列问题呢?依托腾讯云大模型高性能计算集群和行业大模型能力,我们通过腾讯云TI平台,面向客户全面输出MaaS能力,可以满足客户模型预训练、模型精调、智能应用开发等多样化需求。

腾讯云TI平台行业大模型精调解决方案,具备完整大模型精调工具链,支持客户加入自己独有的场景数据,进行精调训练,客户可根据自身业务场景需求,定制不同参数、不同规格的专属模型。

实际上,在过去一段时间里,我们已经携手一些行业头部企业,探索了多个行业大模型的应用场景。通过演示,我们可以看到在文旅客服大模型场景中,模型不仅给到了不同档次的酒店推荐、介绍,甚至可以直接提供预订链接。给用户提供了非常人性化的服务体验,也让智能客服系统,实现服务商业化的闭环。

当然,现在这个效果,仍有很大提升空间,未来随着更多高质量数据的增加,相信效果会更好。行业大模型有望重塑企业生产力、提升市场竞争力。

腾讯云TI平台行业大模型精调解决方案,具备四大优势,包括高质量的行业大模型、完善的平台工具、成熟的流程方法、全面配套服务,可以为客户提供从模型选择、到落地部署的一站式服务。

首先,基于腾讯云多年深耕产业互联网的经验,腾讯云TI平台内置了多个高质量行业大模型,涵盖金融、传媒、文旅、政务、工业等多个行业场景,同时开放支持客户多模型训练任务,满足个性化需求。比如针对客服等场景中的“对话问答”、“相似问生成”等任务,有较好的优化,使用时仅需少量训练数据,便可达到较好的精调效果。

其次,TI-ONE平台提供完善的大模型工具链,包括数据标注、训练、评估、测试和部署等全套工具,同时具备强大的多机多卡训练加速能力,客户可快速在TI-ONE平台上进行一站式的大模型精调。

其中,大模型训练,算力是基础。腾讯云在大模型算力方面拥有领先优势。早在今年4月,腾讯云便发布了面向大模型训练的新一代HCC高性能计算集群,采用最新一代腾讯云星星海自研服务器,结合多层加速的高性能存储系统,具备3.2Tbps业界最高互联带宽,算力性能提升3倍。

全新升级框架加速能力太极Angel,可以提供更优的训练和推理加速能力。在传统CV、NLP算法模型的基础上,新增了对大模型的训练和推理加速能力,通过异步调度优化、显存优化、计算优化等方式,相比行业常用方案性能提升超过30%。

同时,支持更适合AI运算的向量数据库,将帮助高效处理图像、音频和文本等非结构化数据,支持日处理千亿级的检索,将为客户模型训练提供充沛动力。

针对成本高、落地难的问题,腾讯云TI平台实现针对行业场景的低成本落地。在少量算力的基础上,提升特定任务的效果,比如智能客服场景,训练性能可提升10倍,训练成本下降90%。

我们沉淀了行业大模型全生命周期一体化的完整方法论,覆盖“模型选型-训练共建-部署应用”全流程,保障客户需求的顺利交付。

在配套服务方面,腾讯云提供本地化的训练、落地及陪跑优化服务,为客户扫清落地障碍;针对客户需求,提供私有化部署、公有云托管多种灵活部署方案,助力企业快速创建和部署AI应用。

大模型的应用,安全、合规是前提,腾讯云在这方面有成熟的技术积累和经验。在问题侧、模型侧、答案侧三个层面进行敏感信息的过滤和规避,让最终的答案符合安全、规范的要求。同时,依托腾讯多年的安全经验和天御风控能力,提供AIGC全链路内容合规解决方案,确保大模型可信、可靠、可用。

行业大模型与AI助手的结合,可以快速提升“对话理解”和“智能问答”能力。比如,在学习了汽车场景的数据后,车载语音助手可根据车辆状态、用户状态、历史数据等信息,做主动触达和场景运营,提供更人性化的场景服务。

前段时间,我们推出了腾讯云数智人工厂,内置超过10个AI算法模型。腾讯云MaaS能力,可以让数智人分身复刻缩短至24小时,大幅降低成本。

在文旅领域,我们联合一家线上旅游OTA公司,共同探索了文旅行业大模型的应用。其传统智能客服需要人工进行对话配置,知识维护量大、耗时长,且涉及订单等复杂业务场景,在无配置的情况下,无法通过机器人闭环解决问题。精调后的客户专属模型,无需配置对话流程,即可实现端到端解决业务问题。提升任务完成率,降低整体成本。

在金融领域,我们探索了OCR大模型,在银行单据处理场景中的应用。传统的OCR深度学习模型不具备阅读理解和推理能力、模型指标上限低,不同场景下模型能力无法复制,定制成本高。我们联合一家头部银行,基于OCR大模型,上线了4类票据的自动化识别流程,信息录入准确率提升50%。

在行业大模型标准体系方面,我们正在联合中国信通院,共同构建行业大模型的标准体系及能力架构,包括1套ILMOps方法论、60多项能力建设指标。这个标准体系覆盖多个行业,涵盖模型行业能力、模型工程化性能、模型算力网络、模型安全可

雷峰网(公众号:雷峰网)

  • 文章

    6178

  • 浏览

    7

  • 获赞

    597

赞一个、收藏了!

分享给朋友看看这篇文章

热门推荐